

1

The EAV Model
Intro
In this section, I will provide a step-by-step explanation of the entity attribute value (EAV) model
approach as implemented in the MsAccess tool. To gain a thorough understanding of how the tool
operates and the EAV model itself, I suggest working with the MsAccess tool directly, using the
provided training materials. Once you've had hands-on experience with the tool, it proves beneficial
to explore the actual EAV data model. This article provides you with the knowledge about the EAV
data model created in the MsAccess tool.

I will now proceed to describe each table included in the tool, along with a description and sample
data, to help you grasp the concept more effectively.

(Please check the disclaimer at the end of this document regarding the terminology used, if desired.)

The datamodel tables
In this chapter, The Data Model Tables, all tables are explained based on which we can configure the
data model.

Table EntityClass
The initial table in the EAV model is called ENTITYCLASS. This table serves as a listing of the subjects for
which you wish to register records (instances). You can draw a parallel between the records in this
table and the main tables in a traditional relational model. In the context of the electricity industry,
examples of entitieclasses could include connector, grid area, business partner, ENTSO-e role,
contract, and more.

2

Example records in table EntityClass
Id 4 5 6
Classname Road Place Material
ClassCode Road PLC Mater
ClassExportName1 Not in use Not in use Not in use
Description www.infoaboutentityclass.com www.infoaboutentiyclassroad.com www.infoaboutmaterial.com

IsChoiceProperty 0 () 0 () -1 ()
Icon

Within the ENTITYCLASS table, we store information related to each subject (i.e. the entity / class). This
includes the Classname, Classcode, and optionally the ClassExportName and a Description for the
class. The "Id" field is a numeric value that is automatically generated, providing a unique identifier
for each record within this table. While the ClassName and ClassCode are visible in the tool,
ClassExportName is not visible. In the Description column, you can enter a web address for each
entity class, where you refer to the page where you store metadata about the entity class.
Additionally, there is an option to include an Icon2, which will be displayed in the graphical user
interface (GUI) when accessing the data.

The IsChoiceProperty field is a boolean field that serves as an indicator for whether the class is
associated with master data or reference data. In other words, it helps determine if the class is
introduced to categorize an instance (record) of another class or not. By setting this field to true or
false, you can indicate the nature of the class and its role in the data categorization process:

- For the "Road" entity-class, instances within this class typically represent self-contained
instances. To reflect this, set the IsChoiceProperty field to "No"  for this class.

- In the "Material" entity-class, instances are registered to classify instances of another entity-
class, making it a reference data class. For example, a "Road" instance (from the "Road"
class) can be associated with a specific material. Therefore, for classes like "Material," it is
recommended to set the IsChoiceProperty checkbox to "Yes"  unless storing materials is a
core business requirement rather than a categorization feature. Other typical reference
classes may include color, customer type, voltage level, and more.

1 This column is used in TenneT's production concept for a specific reason (as a key field for data exchange), but
for the purpose of explaining the concept, this field is not relevant.
2 I recommend visiting iconarchive.com for a wide selection of great icons. You can find the icons used in this
explanation and documentation on that website. It provides a vast collection of icons that you can explore and
choose from. Icons used: iconsmind.com

3

Table Attribute
The second table introduced is ATTRIBUTE. Whereas the records in ENTITYCLASS could be seen as main
tables in a relational model, the records in the ATTRIBUTE table can be compared to the relational
equivalent column headers or referential tables.

Basically, they are the "questions" you want to ask about an instance related to an entity class. Think
of a name, a BSN number or a license plate number. But also think of number of seats or doors (in a
car), number of m2 or m3 (in a house) or number of litres (capacity of a swimming pool or your
favourite bottle of wine).

The Id is a numeric unique value, that is automatically generated. We record the Attribute itself (i.e.
the title), a Description and a ValidationRule (You can optionally enter an Excel formula as a
validation rule based on which an attribute value is validated during registration).

If a SortOrder is registered, the attributes in list view will be presented in the sorting order as defined
(1: on top, followed by 2, followed by 3, …). With the OverlapAllowed attribute, you record whether
an instance is allowed to have more than one value for the same attribute at the same time. If set to
'On', overlap is allowed.

You can register a Hyperlink for each attribute. This Hyperlink can then refer to a page where you
store metadata about the respective attribute. This webpage can be accessed immediately through
the tool, if you have assigned an attribute value to the applicable attribute (and a hyperlink was
registered for this attribute).

Creation date/time (Created) is generated automatically, for information purposes only.

The last item saved in the ATTRIBUTE table is the DataType. This is where the key to the
ATTRIBUTE_DATATYPE table is stored. You select the applicable DataType for the Attribute. (The content
of) the table ATTRIBUTE_DATATYPE is explained in the next paragraph.

4

Table Attribute_Datatype
A datatype refers to the specific unit or category associated with an attribute.

- Names, BSN (social security) numbers, and registration numbers are classified as the text
datatype.

- The capacity of a swimming pool is expressed in litres.
- The surface area of a house is expressed in square meters (m2).
- The maximum allowable power of an electricity connection is expressed in kilowatts (kW).

It is crucial to accurately register the appropriate datatype. In the application, a "text attribute" and a
"hyperlink attribute" are handled differently compared to a "numeric attribute" like kWh, m2, or litre.

Datatypes are defined within the ATRIBUTE_DATATYPE table.

Example records in table Attribute_Datatype
Id 85 86 87
DataTypeCode Text KM Ltr
DataTypeName Text Kilometer Liter
DataTypeSign Km Ltr

The Id is generated automatically. DataTypeCode and DataTypeName represent the unit you need to
register, serving to describe and identify that unit. DataTypeSign is an optional field where you can
enter a symbol or letters. If used, the registered sign will be appended to a value when it's displayed
in a list or form. For instance, instead of displaying "54" for the length of a road, you will see "54 Km"
if a DataTypeSign is provided.

5

Example records in table Attribute
Id 6 7 8 9 10
Attribute Name Kilometer Licence plate Code Remark
Description3 Not in use Not in use Not in use Not in use Not in use
SortOrder 1 9 7 1 9
OverlapAllowed 

(No, 0verlap is
not allowed)


(No, 0verlap is not
allowed)


(No, 0verlap is not
allowed)


(No, 0verlap is not
allowed)



DataType
(foreign key to table
Attribute_Datatype)

85
(text)

86
(km)

85
(text)

85
(text)

85
(tekst)

Created 1-3-2022
13:45

1-3-2022
14:53

1-3-2022 16:03 1-3-2022
16:09

1-3-2022
16:27

Linkingtable EntityClass_Attribute
What is the name of a Car with registration number NP-ST-99? And How many wheels does a house
have? Questions that are basically irrelevant. In order to ensure that relevant attributes are correctly
associated with their corresponding classes, we introduce a linking table: ENTITYCLASS_ATTRIBUTE. This
enables us to establish the appropriate connections between attributes and classes. By making the
appropriate connections, it will be impossible to ask the irrelevant questions.

In this table, the ATTRIBUTE is related via AttributeTextQuestionId to the relevant ENTITYCLASS via
EntityClassId. The relationshiprecords between ATTRIBUTES and ENTITYCLASS has a validity period
(ValidFromDate & ValidUntilDate) . This validity period determines whether an attribute is available
to an instance of a particular entity class on the day of entry or not. Mandatorystatus and
AttrUniqueInEntityClass are characteristics that are not yet in use in this version. PrivacyRelated, a
feature that indicates that the attribute value associated with an instance of a certain class is privacy-
sensitive, is only available for informational purposes in this version (i.e., no functionality is attached
to it yet)4.

3 This column is used in TenneT's production concept for a specific reason (notesection for the modeldesigner),
but for the purpose of explaining the concept, this field is not relevant.
4 In a future version, the intention is to link functionality to AttrUniqueInEntityClass, Mandatory Status, and
PrivacyRelated.
AttrUniqueInEntityClass: An attribute value associated with a specific attribute may only be linked to one instance.
Mandatory: It enforces that a value must be entered for a specific attribute for every instance of a particular entity class.
PrivacyRelated: Possible to remove all privacy-sensitive attribute values for instances that fall within a search query using 1 command.

6

Examplerecords in table EntityClass_Attribute
Id 1 2
EntityClassId 4 (see table EntityClass: Road) 6 (see table EntityClass: Material)
AttributeQuestionId 6 (see table Attribute: Name) 6 (see table Attribute: Name)
ValidFromDate 1-3-2023 19:00 11-3-2023 14:50
ValidUntilDate NULL NULL
MandatoryStatus Yes Yes
PrivacyRelated No No
AttrUniqueEntityClass Yes Yes
TitleAttribute
(choice between 1st, 2nd, 3th)

1st 1st

In this context, the ATTRIBUTE "Name" is associated with the ENTITYClass "Road." When utilizing the
tool to register master/reference data, this association ensures that the "Name" ATTRIBUTE can be
assigned to an instance (a record) belonging to the "Road" ENTITYCLASS. It can (for example) not be
assigned to an instance of the "Car" ENTITYCLASS.

7

Regarding the TITLEATTRIBUTE, you have the option to select one ATTRIBUTE per ENTITYCLASS as the first
TitleAttribute, another ATTRIBUTE per ENTITYCLASS as the second TitleAttribute, and one more ATTRIBUTE
per ENTITYCLASS as the third TitleAttribute. When viewing overviews that elaborate on the
relationships between instances, the Attribute recorded with the lowest assigned number (1st,
followed by 2nd if the 1st is not recorded, and 3th if the 2nd and 1st are not recorded) will be displayed.
If none of these attributes are recorded, the Id of the instance will be shown.

- Sidetrip to the tool: To observe the functionality of the 1st, 2nd and 3th attributes, you can
follow these steps in the tool:

o Ensure that you have registered some data in the tool
(if you have followed the step-by-step instructions, this should already be done).

o Select an ENTITYCLASS and navigate to the list via the button “Entity Class List”.
o In the list view that appears, you will be able to see the 1st, 2nd and 3th attributes and

their values for each instance that you have linked through the ENTITYCLASS.

o If you select a specific instance and click on "details," you will once again see the 1st,

2nd and 3th attributes in the header of the details view.
o If the instance has any relationships with other instances, you can observe this in the

relationship tab. Here, you will find a sentence displaying the 1st attribute (which is
filled in) of both named instances involved in the relationship.

If this explanation is not entirely clear at the moment, don't worry. It will become clearer as you
process your data within the prototype.

8

Linkingtable Entity_E2EType
Instances form relationships with other instances. In our example, you want to establish a connection
between a road to a city. Or maybe you may desire to registrate the material composition of a road
by linking it to a specific material type.

There are various types of relationships.

Each relationship type is recorded in the table ENTITY_E2ETYPE. In this table, you describe the
relationship without actually connecting records. In addition to the Id (automatically generated
unique number), you give each record a title: RelationName. You also enter a RelationshipSentence.
For example, if you want to connect record X with record Y, the relationship sentence could be: is the
record having the color. When you view the relationships of an instance in a list view, this
relationship record will be displayed as follows: X is the record having the color Y.

9

Table Entity_E2EType
Id Keyvalue; automatically generated number
RelationName The name of the relationship
RelationSentence Here the link is "articulated". The title attribute (1st element), of the first

instance is shown, then the relationsentence, then the title attribute (1st
element) of the second instance.
<Intance 1> <RELATIONSENTENCE><Instance 2>
 Nijmegen is connected to the road A325

Description Description (optionally)
Sortingorder 1 (is shown first), 9 (will be shown after 1 (and 2, 3, 4, .., 8)

(note: sort order is alphabetical)
ValidationInfo Not working yet. In the future you can enter an excel-like-formula that will

validate entries related to a specific relationtype.
Relationdef You can optionally enter information about the type of relationship (1-n, n-

1, or n-m5). This is for informational purposes only, and there is no
functionality linked to the input.

OverlapAllowed1st This field serves to indicate that, in relation to the 1st instance, overlapping
of a relationship is permitted or not. Here's an example to clarify:

Relation type: Road is made with material.

- If OverlapAllowed1st is set to "Yes", you are permitted to register
more than one material for a road, even if there is a time overlap.

- If OverlapAllowed1st is set to "No", you can only define one
material type for a road within a given period. If you attempt to
register a second material type with a time overlap in this case, the
input will be rejected.

OverlapAllowed2nd This field serves to indicate that, in relation to the 2nd instance, overlapping
of a relationship is permitted or not. Here's an example to clarify:
Relation type: Road is made with material.

- If OverlapAllowed2nd is set to "Yes", you are allowed to register
multiple roads made from the same material, even if there is a
time overlap. In this case, it is possible to have multiple roads
made of the material Asphalt (which is indeed the typical scenario).

- If OverlapAllowed2nd is set to "No", you can only define one road
that is made from a specific material within a given period. If you
try to register a second road made from the same material, the
input will be rejected (which doesn't make sense, so the setting
should be: Overlap allowed is Yes).

Hyperlink In the tool, we provide the option to register a hyperlink address for each
relation type. This allows direct access to the corresponding page related
to the subject (relationtype) directly from the application. We can provide
info concerning the relationship on those pages: capturing the essence of
the relationship, storing metadata, etc.
Please note: this functionality is not a core data management function.
Registration, and accessing the webpages cannot be performed directly
from the GUI in this version of the tool.

5 In regards to relationships, this prototype is capable of handling all possible types; one-to-one, one-to-many,
many-to-one, and many-to-many relationships.

10

Examplerecords in table Entity_E2EType
Id 113 114
RelationName City connected to Road Road is made with material
RelationSentence is the city connected to road Is the road made of
Description Elaborates what city is

connected to what road
what material is the road made
of

SortingOrder 5 6
ValidationInfo <Empty> <Empty>
Relationdef <Empty> <Empty>
OverlapAllowed1st Yes No
OverlapAllowed2nd Yes Yes
Hyperlink www.conflpg_cityconnectedtoroad.html www.conflpg_roadmadeofmaterial.html

Linkingtables EntityClass–Entity_E2EType:
EntityClass_E2E_1stEntity & EntityClass_E2E_2stEntity
When defining a relationship, it is necessary to specify the types of instances (i.e., instances
belonging to which ENTITYCLASS) that can be registered as the first instance and the types of instances
that can be registered as the second instance within that relationship. For instance, when registering
a relationship with the name "City linked to road," you would want to limit the selection of instances
as follows: only cities can be chosen as the first instance, and only roads can be chosen as the second
instance.

To accomplish this, you need to associate one or more entity classes with a particular relationship as
the 1st ENTITYCLASS, allowing instances from those classes to be selected as the 1st instance. Similarly,
you need to associate one or more entity classes with the same relationship as the 2nd ENTITYCLASS,
enabling instances from those entity classes to be chosen as the 2nd instance.

The Id, as in every table in this database, is a unique number that is automatically generated and
used as an internal key. The other fields are 1st/2nd EntityClassId and EntityRelationTypeId, which
are reference key fields pointing to the ENTITYCLASS and ENTITY_E2ETYPE tables.

11

Example records in table EntityClass_E2E_1stEntity
Id 1
1stEntityClassId 5 (See EntityClass table: Place)
EntityRelationTypeId 113 (See Entity_E2EType table: City Connected to Road)

Example records in table EntityClass_E2E_2ndEntity
Id 1
1stEntityClassId 4 (See EntityClass table: Road)
EntityRelationTypeId 113 (See Entity_E2EType table: City Connected to Road)

The data tables
With the aforementioned steps, we have established our model (albeit a simple one, to provide a
general understanding). We have defined the ENTITYCLASSes, which correspond to main tables in a
relational world. We have also determined the ATTRIBUTEs, representing column names or referential
tables in the relational world, and associated them with their respective ENTITYCLASSes, via the table
ENTITYCLASS_ATTRIBUTE, ensuring (in a relational world that) the correct columns exist in the tables.

Furthermore, we have defined ATTRIBUTE_DATATYPEs such as text, hyperlink, kW, MVar, cm, litre, etc.,
and linked these datatypes to the corresponding ATTRIBUTEs. Additionally, we have defined
relationships (Entity_E2EType) and connected them to the ENTITYCLASSes via the linking tables
ENTITYCLASS_E2E_1ST/2NDENTITY. In the relational world, these relationships are represented by
drawing connections between the tables.

Once our data model has been configured, we can proceed to incorporate the actual data (register
the master and reference data records, as well as the relationships between those records).

12

Table Entity (Instance)
In the ENTITY table6, the actual instances (records) will be registered.

In this table, we will register the actual instances, such as the "A325" highway between Nijmegen and
Arnhem or a specific place like "Nijmegen." However, we will not register the name of the road (e.g.,
"A325") or cityname (“Nijmegen”) in this table and/or at this stage. Instead, the table will contain a
unique number (Id), serving as the key field for instance (record) identification, and an EntityClassId.
The EntityClassId acts as a reference to the ENTITYCLASS table, indicating that the instance belongs to a
particular ENTITYCLASS, such as "Place." Additionally, a CreationDate will be automatically generated,
although it holds no functional value.

Example records in table Entity
Id 1134 1135 1136 1137
EntityClassId 4

see EntityClass: Road
5
See entity class: Place

5
See entity class: Place

6
See entity class: Material

CreationDate 11-4-2023 17:53 11-4-2023 17:56 11-4-2023 17:57 11-4-2023 17:59

We have successfully added instances to the database. Each of the four instances has been assigned
a unique Id. We have additional information indicating that the instance with Id 1134 belongs to the
"Road" ENTITYCLASS, while the instances with IDs 1135 and 1136 belong to the "Place" ENTITYCLASS.
Furthermore, the instance with Id 1137 is classified as a "Material" type-instance. However, apart
from this classification, we do not possess any further details about the instance at this point.

6 The more appropriate name for this table would be "Instance" instead of "Entity." Early in the design of this
tool, I assigned an incorrect name. Unfortunately, due to the complexities involved in renaming a table in
MsAccess, I have decided to retain the table with its original, less suitable name.

13

Table EntityIcon
The table ENTITYICON allows us to store various attachments, including icons and other file types such
as PDF, Word, Excel, and PNG, which are specifically associated with an instance. In this application,
we utilize the standard attachment functionality of Microsoft Access, enabling the ability to link
multiple attachments within a single record.

Example records in table Entity_Icon
EntityId 1134 1135 1136 1137
EntityIcon

   
EntityIconOrder
(not in use)

- - - -

EntityIconCreation 11-4-2023 17:53 11-4-2023 17:56 11-4-2023 17:57 11-4-2023 17:59

In this version, the "viewing" (or providing) of attachments on the screen where the details of an
instance are displayed has been implemented. However, it is not yet possible to input an attachment
through the screens. Functionality related to this will be offered in the next version of this tool. If you
still want to use this feature, you will need to directly enter a record for the respective instance in the
ENTITYICON table. The ENTITYICON table, which has a one-to-one relationship with the ENTITY table, can
be accessed via the sidebar. Enter the Id of the relevant instance. In the attachment column
EntityIcon (the column with a paperclip as the title), right-click and select "manage attachments",
click on Add, select your attachment(s), and confirm your choice. You can add more attachments
later if you wish.

I use this function purely to display an image (Icon) of an instance, such as a company logo or an
image associated with a specific instance. If you add an image as the first attachment, it will be visible
when you open the detail screen for the respective instance.

14

Table Attribute_Value
The next table, named ATTRIBUTE_VALUE, establishes associations between instances (from the ENTITY
table) and attributes (from the ATTRIBUTE table) along with their respective values.

Exampledata in table Attribute_value
Id EntityId AttributeId AttributeValue ValidfromDate ValidUntilDate Creationdate
1 1134 6 (Name) A325 1-4-2000 11-4-2023 15:43
2 1135 6 (Name) Nijmegen 1-1-1230 11-4-2023 15:45
3 1136 6 (Name) Arnhem 1-1-1233 11-4-2023 15:46
4 1137 6 (Name) Asfalt 1-1-2000 11-4-2023 15:47
5 1135 9 (Code) NM 1-1-1230 11-4-2023 16:45
6 1136 9 (Code) ARN 1-1-1233 11-4-2023 16:45

In this table, an instance is assigned a unique key value: Id. Furthermore, there is a referring key
called EntityId that indicates the instance to which the record in the ATTRIBUTE_VALUE table
corresponds. Similarly, another referring key called AttributeId references the ATTRIBUTE, which
represents the "Question" being asked. Following this is the AttributeValue, which can be considered
the answer to the question (Attribute) posed for the respective ENTITY.

This AttributeValue has a validity period expressed through the fields ValidFromDate and
ValidUntilDate. ValidFromDate represents the start date from which the value is valid, while
ValidUntilDate indicates the end date. If this end date is unknown or infinite, you leave this field
empty.

15

In record 1135, we had initially registered an instance without specific knowledge that it referred to
Nijmegen. At that point, based on the entry in the ENTITY table, we only knew that it belonged to the
“Place” ENTITYCLASS. Later, we associated this instance (1135) with an Attribute (Name) to capture its
AttributeValue. Therefore, in the ATTRIBUTE_VALUE table, we record the AttributeValue where the
EntityId (1135) is stored, answering the question posed by the AttributeId (6) for the “Place”
ENTITYCLASS. The AttributeValue in this case is "Nijmegen."

Upon entry, a CreationDate (with no functional purpose) is automatically generated and recorded in
the system.

Table Entity2Entity
Lastly, we establish relationships between instances by relating instances to other instances. This is
accomplished through the ENTITY2ENTITY table. Within this table (having an Id for every record), we
specify the first recorded instance (EntityId_1stEntity), the second recorded instance
(EntityId_2ndEntity) , the nature of the relationship (EntityRelationTypeId, referring to the
relationtype table ENTITY_E2ETYPE), and the period during which this relationship is applicable
(ValidFromDate and ValidUntilDate). The registration date (CreationDate) is automatically generated
with the date and time of the registration moment. This serves no functional purpose.

16

The specific relationship "type" is stored in the ENTITY_E2ETYPE table. As an example, a record could
be City Connected to Road, indicating the relationship between a city and a road.

Exampledata in table Entity2Entity
Id EntityId_

1stEntity
EntityId_
2ndEntity

EntityRelationTypeId Valid
from
Date

Valid
Until
Date

Creation
date

100 1135
Id for Nijmegen

1134
Id for A325

113
Id for Relationclass
“City connected to road”

1-1-
1989

 15-4-2023

101 1134
Id for A325

1137
Id for Asphalt

114
Id for Relationclass
“Road is made with material”

1-1-
1989

 15-4-2023

102
103
104
105

And thus, we have completed the process. Data modelling (via the datamodel tables) and MRD
registration (via the data tables).

The data is stored according to EAV technology but can be drawn relationally. At TenneT, we extract
data from operational environments and process it through normalization rules (Codd & co) in the
data model using this tool. We then analyze the result with all processspecialists, and if all processes
seem feasible, we represent the model relationally. Afterward, we tap into the master data from
another local information silo to also incorporate that data into the model as designed in the tool. If
this new information silo has implications for the current data model, we simply adjust the data
model accordingly. We continue this process until all local data sources have been processed. Once
we reach that point, we have generated our enterprise-wide data model.

The EAV methodology is exceptionally well-suited for this "reverse engineering" of data processing.
Furthermore, for data analysts among us, this storage methodology seamlessly integrates with graph
database and analysis technologies.

17

The last things:
Overlap allowed (Y/N)

Within our system, there are two tables: ATTRIBUTE and ENTITY_E2EType, which contain columns
related to "overlap allowed." When for a record in a table this column is ticked as true, it indicates
that overlap is allowed. Conversely, when it is not ticked (set false), it means that overlap is not
permitted. But what exactly does "overlap" refer to?

In the ENTITY table, the instance itself does not have a validity period. At the highest level, the table
just records a unique identifier (Id) used for identification purposes, as well as a reference ID
(EntityClassId) to the ENTITYCLASS table, which determines the type of the entity.

However, for all other information associated with a specific instance, there is a validity period. This
means that attributes such as name, code, hyperlink, comment, or any other attribute value are
linked to the instance for a specific period of time. Similarly, in the case of defined relationships
between entities, the relationship itself has a validity period.

By specifying whether overlap is allowed, we can control whether multiple attribute values of the
same attribute can be linked to an instance concurrently, with each value having its own active
validity period. In other words, if overlap is permitted, it is possible to have multiple attribute values
of a specific attribute simultaneously linked to an instance, even if their validity periods overlap.

So, when overlap is allowed, you have the flexibility to enter multiple attribute values for a specific
instance. Let's take an example with an instance having ID 567:

Instance with ID 567:
- Name: John , valid from 1-1-1989 until 31-12-2004
- Name: Mark, valid from 1-1-2002 until <empty>

In this case, on 2-1-2002, the instance with ID 567 has both the names John and Mark associated
with it. However, this situation is considered undesirable because ideally, a record should have only

18

one name on a given date. Therefore, for the attribute "Name," the setting for "Overlap allowed"
should be set to "No" to prevent such overlapping values.

On the other hand, for attributes like "Remark," you might consider allowing overlap if it serves a
purpose or is deemed appropriate in your specific scenario. This means that different remarks can be
associated with the instance concurrently, even if their validity periods overlap.

Concerning the relations: In the table ENTITY_E2ETYPE, there are two columns related to overlap:
OverlapAllowed1st and OverlapAllowed2nd. To provide a clearer understanding, let's use the
relationship "Road is made of material." In this example, we define the following:

- OverlapAllowed1st (for the first entity): False
- OverlapAllowed2nd (for the second entity): True

This means that for the relationship "Road is made of material," we have specified that:

A road may consist of at most one type of material (such as asphalt). This implies that a road record
cannot have overlapping instances concerning instances from the entity class materials.

On the other hand, a type of material can be used in multiple roads. This means that a material
instance can be associated with multiple road instances, allowing for overlap.

By setting OverlapAllowed1st to false and OverlapAllowed2nd to true for the "Road is made of
material" relationship, we ensure that each road instance is associated with a single material type,
while a material type can be used in multiple road instances, allowing for overlapping relationships.

In summary, the decision to allow or disallow overlap for specific attributes depends on the
requirements and desired behavior for managing attribute values within your system.

19

SortingOrder/SortOrder
The SortingOrder determines the sequence in which data is presented in lists. When you access an
instance and view its related attribute values or related instances, the data in the lists within the
application forms is displayed based on a predefined sorting order. It's important to note that this
sorting order follows an alphabetical arrangement, rather than a numerical one.

OptimizedIndex

EAV has a drawback when it comes to data retrieval, especially when implementing an EAV model in
MsAccess, a database program designed for standard relational database models. To query data in
this scenario, the standard SQL language must be utilized. However, queries tend to become more
complex, leading to a decrease in performance. To address this issue and optimize performance, an
auxiliary table was implemented. This table indexes data per instance based on predefined settings,
the 1st, 2nd, and 3rd attribute per entity class. This technical solution serves as a performance
optimization measure and is implemented solely for that purpose.

20

Disclaimer
This prototype (the file) is made available as open source. The prototype is created in MsAccess.

The terms
This file is created in MsAccess and will be provided “as is” and without any form of warranty,
including without limitation merchantability, fitness for a particular purpose, absence of defects or
errors, accuracy, non-infringement of intellectual property rights. In no event shall TenneT nor its
employees be liable for any direct, indirect, incidental, special, exemplary or consequential damages
(including, but not limited to, procurement of substitute goods or services, loss of use, data or
profits, or business interruption) however caused and on any theory of liability, whether in contract,
strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this
MsAccess file, even if advised of the possibility of such damage. The file is not to be used for
whatever production environment.

This MsAcces file does not include a license to use the MsAccess program of Microsoft, nor does it
grant permission to use the trade names, trademarks, service marks, or names of TenneT and/or
third parties.. The user of this MsAccess file is solely responsible for obtaining the applicable licenses
from Microsoft or any other license necessary.

If you make modifications to the MsAccess file, please provide the modification including explanation
to the author. The author will continuously improve the file and make all updates available.

If you use the principle and/or file as explained above and elaborated in the MsAccess file in your
software and/or in a publication/article/expression (commercially or not commercially), please
include the credentials of the author (TenneT / Coen Hendrikx).

Be aware:
The MsAccess tool (the file) is constantly evolving, and not fully tested. There will be bugs.

Sources used
- Icons used in this document: iconsmind.com (via iconarchive.com)
- Wikipedia
- ChatGPT

Note
The terminology surrounding EAV (Entity-Attribute-Value) varies among different sources of
information. Sometimes, entities are confused with instances, records with instances, and
parameters with attributes. The terminology used in the tool is based on the knowledge available at
that time. Unfortunately, it couldn't be changed as doing so would lead to issues in the code,
rendering certain parts of it non-functional.

So, for clarity:

- Where I registered the table ENTITY CLASS, I meant ENTITY
- Where I registered the table ENTITY, I meant INSTANCE

There are likely to be more incorrect terms associated with attributes and tables.

https://iconsmind.com/

	The EAV Model
	Intro

	The datamodel tables
	Table EntityClass
	Table Attribute
	Table Attribute_Datatype
	Linkingtable EntityClass_Attribute
	Linkingtable Entity_E2EType
	Linkingtables EntityClass–Entity_E2EType: EntityClass_E2E_1stEntity & EntityClass_E2E_2stEntity

	The data tables
	Table Entity (Instance)
	Table EntityIcon
	Table Attribute_Value
	Table Entity2Entity

	The last things:
	Overlap allowed (Y/N)
	SortingOrder/SortOrder
	OptimizedIndex

	Disclaimer
	The terms

	Sources used
	Note

